Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78.803
Filtrar
2.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622592

RESUMEN

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Asunto(s)
Ciclofilina A , Dieta Alta en Grasa , Ferroptosis , Animales , Ratas , Ciclofilina A/metabolismo , Miocardio/metabolismo , Obesidad/metabolismo
4.
PLoS One ; 19(4): e0301036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625956

RESUMEN

PURPOSE: This study aims to investigate the protective mechanism of dihydromyricetin PLGA nanoparticles (DMY-PLGA NPs) against myocardial ischemia-reperfusion injury (MIRI) in vitro and the improvement of oral bioavailability in vivo. METHODS: DMY-PLGA NPs was prepared and characterized by emulsifying solvent volatilization, and the oxidative stress model of rat H9c2 cardiomyocyte induced by H2O2 was established. After administration, cell survival rate, lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected, and the expressions of PGC1α and PPARα were detected by western blot (WB). At the same time, the pharmacokinetics in rats were studied to explore the improvement of bioavailability. RESULTS: DMY-PLGA NPs can significantly increase cell survival rate, decrease LDH and MDA content, increase SOD content and PGC1α、PPARα protein expression. Compared with DMY, the peak time of DMY-PLGA NPs was extended (P<0.1), and the bioavailability was increased by 2.04 times. CONCLUSION: DMY-PLGA NPs has a significant protective effect on H9c2 cardiomyocytes, which promotes the absorption of DMY and effectively improves bioavailability.


Asunto(s)
Flavonoles , Peróxido de Hidrógeno , PPAR alfa , Ratas , Animales , Peróxido de Hidrógeno/metabolismo , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Estrés Oxidativo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Superóxido Dismutasa/metabolismo , Apoptosis
5.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644381

RESUMEN

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Asunto(s)
Fibrosis , Proteínas de Homeodominio , Miocardio , Humanos , Ratones , Animales , Fibrosis/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Miocardio/patología , Miocardio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ratones Noqueados , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Modelos Animales de Enfermedad , Masculino
7.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659015

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , Miocardio , Cordón Umbilical , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cardiomiopatías Diabéticas/terapia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Humanos , Masculino , Fibrosis/terapia , Ratones , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL
8.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 197-203, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650132

RESUMEN

Myocardial fibrosis is a common pathological manifestation that occurs in various cardiac diseases. The present investigation aims to reveal how DNMT1/lncRNA-ANRIL/NLRP3 influences fibrosis and cardiac fibroblast pyroptosis. Here, we used ISO to induce myocardial fibrosis in mice, and LPS and ATP to induce myocardial fibroblast pyroptosis. The results showed that DNMT1, Caspase-1, and NLRP3 expression were significantly increased in fibrotic murine myocardium and pyroptotic cardiac fibroblasts, whereas LncRNA-ANRIL expression was decreased. DNMT1 overexpression decreased the level of LncRNA-ANRIL while increasing the levels of NLRP3 and Caspase-1. Contrarily, silencing DNMT1 increased the LncRNA-ANRIL and decreased the levels of NLRP3 and Caspase-1. Silencing LncRNA-ANRIL increased the levels of NLRP3 and Caspase-1. The present findings suggest that DNMT1 can methylate LncRNA-ANRIL during the development of myocardial fibrosis and CFs cell scorching, resulting in low LncRNA-ANRIL expression, thereby influencing myocardial fibrosis and cardiac fibroblast pyroptosis.


Asunto(s)
Caspasa 1 , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Fibroblastos , Fibrosis , Miocardio , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , ARN Largo no Codificante , Transducción de Señal , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Piroptosis/genética , Piroptosis/efectos de los fármacos , Animales , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Caspasa 1/metabolismo , Caspasa 1/genética , Fibroblastos/metabolismo , Miocardio/patología , Miocardio/metabolismo , Ratones , Metilación de ADN/genética , Masculino , Ratones Endogámicos C57BL
9.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652092

RESUMEN

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Asunto(s)
Vesículas Extracelulares , Trasplante de Corazón , Macrófagos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Ratas , Macrófagos/metabolismo , Masculino , Trasplante de Corazón/métodos , Glucosa/metabolismo , Miocardio/metabolismo , Modelos Animales de Enfermedad , Recuperación de la Función , Glucólisis , Corazón/fisiopatología , Corazón/fisiología
10.
J Cell Mol Med ; 28(8): e18334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661439

RESUMEN

The genetic information of plasma total-exosomes originating from tissues have already proven useful to assess the severity of coronary artery diseases (CAD). However, plasma total-exosomes include multiple sub-populations secreted by various tissues. Only analysing the genetic information of plasma total-exosomes is perturbed by exosomes derived from other organs except the heart. We aim to detect early-warning biomarkers associated with heart-exosome genetic-signatures for acute myocardial infarction (AMI) by a source-tracking analysis of plasma exosome. The source-tracking of AMI plasma total-exosomes was implemented by deconvolution algorithm. The final early-warning biomarkers associated with heart-exosome genetic-signatures for AMI was identified by integration with single-cell sequencing, weighted gene correction network and machine learning analyses. The correlation between biomarkers and clinical indicators was validated in impatient cohort. A nomogram was generated using early-warning biomarkers for predicting the CAD progression. The molecular subtypes landscape of AMI was detected by consensus clustering. A higher fraction of exosomes derived from spleen and blood cells was revealed in plasma exosomes, while a lower fraction of heart-exosomes was detected. The gene ontology revealed that heart-exosomes genetic-signatures was associated with the heart development, cardiac function and cardiac response to stress. We ultimately identified three genes associated with heart-exosomes defining early-warning biomarkers for AMI. The early-warning biomarkers mediated molecular clusters presented heterogeneous metabolism preference in AMI. Our study introduced three early-warning biomarkers associated with heart-exosome genetic-signatures, which reflected the genetic information of heart-exosomes carrying AMI signals and provided new insights for exosomes research in CAD progression and prevention.


Asunto(s)
Biomarcadores , Exosomas , Infarto del Miocardio , Exosomas/genética , Exosomas/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/diagnóstico , Humanos , Femenino , Masculino , Miocardio/metabolismo , Miocardio/patología , Transcriptoma/genética
12.
Mol Biol Rep ; 51(1): 532, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637360

RESUMEN

BACKGROUND: Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS: The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1ß and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1ß levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION: The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.


Asunto(s)
Antioxidantes , Cardiotoxicidad , Humanos , Ratas , Animales , Antioxidantes/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Arbutina/farmacología , Arbutina/metabolismo , Arbutina/uso terapéutico , Miocardio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Doxorrubicina/efectos adversos , Estrés Oxidativo , Antiinflamatorios/farmacología , Apoptosis , Biomarcadores/metabolismo
13.
Circ Res ; 134(6): 635-658, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484029

RESUMEN

Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Corazón , Relojes Circadianos/fisiología , Sueño/fisiología , Miocardio/metabolismo
14.
BMC Genomics ; 25(1): 312, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532337

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is becoming a very well-known clinical entity and leads to increased heart failure in diabetic patients. Long non-coding RNAs (LncRNAs) play an important role in the pathogenesis of DCM. In the present study, the expression profiles of lncRNAs and mRNAs were illuminated in myocardium from DCM mice, with purpose of exploring probable pathological processes of DCM involved by differentially expressed genes in order to provide a new direction for the future researches of DCM. RESULTS: The results showed that a total of 93 differentially expressed lncRNA transcripts and 881 mRNA transcripts were aberrantly expressed in db/db mice compared with the controls. The top 6 differentially expressed lncRNAs like up-regulated Hmga1b, Gm8909, Gm50252 and down-regulated Msantd4, 4933413J09Rik, Gm41414 have not yet been reported in DCM. The lncRNAs-mRNAs co-expression network analysis showed that LncRNA 2610507I01Rik, 2310015A16Rik, Gm10503, A930015D03Rik and Gm48483 were the most relevant to differentially expressed mRNAs. CONCLUSION: Our results showed that db/db DCM mice exist differentially expressed lncRNAs and mRNAs in hearts. These differentially expressed lncRNAs may be involved in the pathological process of cardiomyocyte apoptosis and fibrosis in DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Perfilación de la Expresión Génica/métodos , Miocardio/metabolismo , Biología Computacional , ARN Mensajero/genética , Redes Reguladoras de Genes , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología
15.
Physiol Rep ; 12(5): e15976, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472161

RESUMEN

Small animal models have shown improved cardiac function with DPP-4 inhibition, but many human studies have shown worse outcomes or no benefit. We seek to bridge the gap by studying the DPP-4 inhibitor sitagliptin in a swine model of chronic myocardial ischemia using proteomic analysis. Thirteen Yorkshire swine underwent the placement of an ameroid constrictor on the left coronary circumflex artery to model chronic myocardial ischemia. Two weeks post-op, swine received either sitagliptin 100 mg daily (SIT, n = 5) or no drug (CON, n = 8). After 5 weeks of treatment, swine underwent functional measurements and tissue harvest. In the SIT group compared to CON, there was a trend towards decreased cardiac index (p = 0.06). The non-ischemic and ischemic myocardium had 396 and 166 significantly decreased proteins, respectively, in the SIT group compared to CON (all p < 0.01). This included proteins involved in fatty acid oxidation (FAO), myocardial contraction, and oxidative phosphorylation (OXPHOS). Sitagliptin treatment resulted in a trend towards decreased cardiac index and decreased expression of proteins involved in OXPHOS, FAO, and myocardial contraction in both ischemic and non-ischemic swine myocardium. These metabolic and functional changes may provide some mechanistic evidence for outcomes seen in clinical studies.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Isquemia Miocárdica , Porcinos , Humanos , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Proteoma/metabolismo , Fosforilación Oxidativa , Fosfato de Sitagliptina/uso terapéutico , Proteómica/métodos , Miocardio/metabolismo , Hipoglucemiantes/uso terapéutico , Modelos Animales de Enfermedad
16.
Int Heart J ; 65(2): 292-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556337

RESUMEN

B-type natriuretic peptide (BNP) possesses protective cardiovascular properties; however, there has not been sufficient serious consideration of the side effects of BNP. As for sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), it was once considered a new target for the treatment of heart failure (HF). Nevertheless, clinical trials of SERCA2a gene therapy in HF have finally become unsuccessful. Research has found that elevated BNP levels and decreased SERCA2a expression are two important HF characteristics, which are always negatively correlated. We hypothesize that BNP inhibits SERCA2a expression and, therefore, exerts negative effects on SERCA2a expression and function.The effects of BNP on endogenous SERCA2a expression and function were tested in mice with HF induced by transverse aortic constriction and neonatal rat cardiomyocytes (NRCM). Furthermore, to verify the effects of BNP on exogenous SERCA2a gene transduction efficacy, BNP was added to the myocardium and cardiomyocytes infected with an adenovirus overexpressing SERCA2a.In vivo, BNP levels were increased, SERCA2a expression was reduced in both the BNP intervention and HF groups, and BNP reduced the overexpressed exogenous SERCA2a protein in the myocardium. Our in vitro data showed that BNP dose-dependently inhibited the total and exogenous SERCA2a expression in NRCM by activating the cGMP-dependent protein kinase G. BNP also inhibited the effects of SERCA2a overexpression on Ca2+ transience in NRCM.The expression and function of endogenous and exogenous SERCA2a are inhibited by BNP. The opposite relationship between BNP and SERCA2a should be given serious attention in the treatment of HF via BNP or SERCA2a gene therapy.


Asunto(s)
Insuficiencia Cardíaca , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Ratas , Ratones , Animales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Péptido Natriurético Encefálico/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
17.
Eur J Pharmacol ; 970: 176465, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479722

RESUMEN

BACKGROUND: Arglabin is a plant alkaloid (sesquiterpene lactone) that is used as an anticancer drug. It has potential anti-diabetic and anti-atherogenic effects. PURPOSE: Arglabin has drawn particular attention because of its therapeutic effects as an anti-inflammatory agent in multiple diseases. Since arglabin inhibits Epidermal Growth Factor Receptor (EGFR) tyrosine kinase, concerns for cardiotoxic effects are valid. The present study was designed to investigate the protective effects of arglabin on the myocardium. STUDY DESIGN: This study was designed to evaluate the effect of arglabin on the myocardium in an experimental model of myocardial necrosis in rats. Different doses of arglabin (2.5, 5, and 10 µg/kg) were investigated as pre-treatment for 21 days in the isoproterenol (ISO) model of myocardial necrosis groups and per se groups. METHODS: On the 22nd day, hemodynamic, histopathological, electron microscopy, oxidative stress markers, inflammatory mediators, apoptotic markers, inflammasome mediators, and Western blot analysis were performed to evaluate the effects of arglabin. RESULTS: Arglabin pre-treatment showed improvement in hemodynamic parameters and histopathological findings at low doses in isoproterenol-induced myocardial necrosis model of rats. Arglabin administration altered myocardial structure and modulated myocardial function via activation of NFκB/MAPK pathway that led to myocardial injury with an increase in dose. CONCLUSION: Arglabin imparted partial cardio-protection via an inflammasome-dependent pathway and mediated injury through the inflammasome-independent pathway.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Sesquiterpenos de Guayano , Ratas , Animales , Inflamasomas/metabolismo , Isoproterenol/farmacología , Corazón , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Lesiones Cardíacas/metabolismo
18.
Biomolecules ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38540729

RESUMEN

Heart failure (HF) represents a significant global health challenge, characterized by high morbidity and mortality rates, and imposes considerable burdens on healthcare systems and patient quality of life. Traditional management strategies, primarily relying on clinical assessments and standard biomarkers like natriuretic peptides, face limitations due to the heterogeneity of HF. This review aims to delve into the evolving landscape of non-natriuretic biomarkers and the transformative potential of omics technologies, underscoring their roles in advancing HF treatment towards precision medicine. By offering novel insights into the biological underpinnings of HF, including inflammation, myocardial stress, fibrosis, and metabolic disturbances, these advancements facilitate more accurate patient phenotyping and individualized treatment strategies. The integration of non-natriuretic biomarkers and omics technologies heralds a pivotal shift in HF management, enabling a move towards tailored therapeutic interventions. This approach promises to enhance clinical outcomes by improving diagnostic accuracy, risk stratification, and monitoring therapeutic responses. However, challenges such as the variability in biomarker levels, cost-effectiveness, and the standardization of biomarker testing across different healthcare settings pose hurdles to their widespread adoption. Despite these challenges, the promise of precision medicine in HF, driven by these innovative biomarkers and technologies, offers a new horizon for improving patient care and outcomes. This review advocates for the further integration of these advancements into clinical practice, highlighting the need for ongoing research to fully realize their potential in transforming the landscape of heart failure management.


Asunto(s)
Insuficiencia Cardíaca , Calidad de Vida , Humanos , Insuficiencia Cardíaca/diagnóstico , Péptidos Natriuréticos/uso terapéutico , Biomarcadores , Miocardio/metabolismo
19.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542242

RESUMEN

Cardiovascular diseases are a significant cause of illness and death worldwide, often resulting in myofibroblast differentiation, pathological remodeling, and fibrosis, characterized by excessive extracellular matrix protein deposition. Treatment options for cardiac fibrosis that can effectively target myofibroblast activation and ECM deposition are limited, necessitating an unmet need for new therapeutic approaches. In recent years, microcurrent therapy has demonstrated promising therapeutic effects, showcasing its translational potential in cardiac care. This study therefore sought to investigate the effects of microcurrent therapy on cardiac myofibroblasts, aiming to unravel its potential as a treatment for cardiac fibrosis and heart failure. The experimental design involved the differentiation of primary rat cardiac fibroblasts into myofibroblasts. Subsequently, these cells were subjected to microcurrent (MC) treatment at 1 and 2 µA/cm2 DC with and without polarity reversal. We then investigated the impact of microcurrent treatment on myofibroblast cell behavior, including protein and gene expression, by performing various assays and analyses comparing them to untreated myofibroblasts and cardiac fibroblasts. The application of microcurrents resulted in distinct transcriptional signatures and improved cellular processes. Gene expression analysis showed alterations in myofibroblast markers, extracellular matrix components, and pro-inflammatory cytokines. These observations show signs of microcurrent-mediated reversal of myofibroblast phenotype, possibly reducing cardiac fibrosis, and providing insights for cardiac tissue repair.


Asunto(s)
Cardiomiopatías , Miofibroblastos , Ratas , Animales , Miofibroblastos/metabolismo , Miocardio/metabolismo , Fibroblastos/metabolismo , Corazón/fisiología , Cardiomiopatías/metabolismo , Diferenciación Celular , Fibrosis
20.
Int Immunopharmacol ; 131: 111883, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38503016

RESUMEN

Infarct healing requires a dynamic and orchestrated inflammatory reaction following myocardial infarction (MI). While an uncontrolled excessive inflammatory response exaggerates ischemic injury post-MI, M2-like reparative macrophages may facilitate inflammation regression and promote myocardial healing. However, how protein post-translational modification regulates post-MI cardiac repair and dynamic myeloid activation remains unknown. Here we show that M2-like reparative, but not M1-like inflammatory activation, is enhanced by pharmacologically-induced hyper-O-GlcNAcylation. Mechanistically, myeloid knockdown of O-GlcNAc hydrolase O-GlcNAcase (Oga), which also results in hyper-O-GlcNAcylation, positively regulates M2-like activation in a STAT6-dependent fashion, which is controlled by O-GlcNAcylation of STAT6. Of note, both systemic and local supplementation of thiamet-G (TMG), an Oga inhibitor, effectively facilitates cardiac recovery in mice by elevating the accumulation of M2-like macrophages in infarcted hearts. Our study provides a novel clue for monocyte/macrophage modulating therapies aimed at reducing post-MI hyperinflammation in ischemic myocardium.


Asunto(s)
Hidrogeles , Infarto del Miocardio , Ratones , Animales , Hidrogeles/metabolismo , Miocardio/metabolismo , Corazón , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Acetilglucosaminidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA